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Talk Abstract

Functional interpretations are maps of formulas from the language of one
theory into the language of another theory, in such a way that provability
is preserved. Functional interpretations have many uses, such as: relative
consistency results, conservation results and the extraction of computational
content from proofs. We prove the factorisation U = KB of Jaime Gaspar and
Fernando Ferreira’s classical nonstandard bounded functional interpretati-
on U [2] in terms of Jean-Louis Krivine’s negative translation K [5] and Bruno
Dinis and Jaime Gaspar’s intuitionistic nonstandard bounded functional in-
terpretation B [1]. We also give some applications of the factorisation.
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