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Talk Abstract

Linear elasticity, a fundamental theory in solid mechanics, describes the
deformation behavior of elastic materials under external forces. The governing
equations, typically comprising partial differential equations (PDEs) such as
the equilibrium equations, stress-strain relations, and boundary conditions,
form the backbone of predicting stress and displacement fields within elastic
bodies. Solving these equations analytically is often infeasible for complex
geometries and loading conditions, necessitating the use of numerical methods.
Traditional numerical methods like the Finite Element Method (FEM) have
been extensively employed to tackle linear elasticity problems. However,
these methods can be computationally intensive, particularly for high-dimen-
sional and large-scale problems, and often require fine meshing to achieve
accurate solutions. Moreover, they can struggle with incorporating data-
driven insights seamlessly, which is increasingly important in modern engi-
neering applications that leverage real-time data for predictive maintenance
and optimization. Physics-Informed Neural Networks (PINNs) have emerged
as a promising alternative, offering a novel approach that integrates the po-
wer of deep learning with the rigor of physical laws. PINNs utilize neural
networks to approximate the solution of PDEs, embedding the governing
equations and boundary conditions into the loss function during training.
This fusion of data-driven modeling and physics-based constraints enables
PINNs to provide solutions that respect the underlying physical principles,
potentially offering several advantages:

Mesh-free Solutions: Unlike FEM, PINNs do not require a mesh, which
simplifies preprocessing and can handle complex geometries more flexibly;

Data Integration: PINNs can seamlessly integrate experimental data and
simulation results, enhancing predictive accuracy and enabling real-time up-
dates;
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Scalability: The inherent parallelism of neural networks can lead to more
scalable solutions for large-scale problems;

Adaptability: PINNs are easily adaptable to different types of boundary
conditions and material behaviors without the need for significant reprogra-
mming.

In the context of linear elasticity, PINNs can be particularly advantageous for
solving problems where traditional methods face challenges. For example, in
2D elasticity problems involving irregular domains, varying material proper-
ties, or complex loading conditions, PINNs can provide robust and efficient
solutions. With this talk, we present several applications of PINNs in 2D
(and 3D) linear elasticity to demonstrate their effectiveness and versatility.
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